【精品】数学说课稿模板锦集十篇
作为一名教师,总不可避免地需要编写说课稿,借助说课稿可以让教学工作更科学化。我们该怎么去写说课稿呢?以下是小编精心整理的数学说课稿10篇,仅供参考,希望能够帮助到大家。
数学说课稿 篇1
一、说教材
1、教材内容及其所处的地位与作用。
《体育中的数学》是北师大版第六册数学实践活动内容之一,是在学生学习了两位数的乘法与长方形和正方形的面积之后安排的。它是通过研究体育中体操队列与安排比赛场次的问题,将基本的数量关系与组合问题融合在一起。通过体操队列的变换队形,探索行数、每行人数与总人数之间的数量关系,增强应用数学的意识,突出表现为用列表的方法解决实际问题;通过安排比赛场次来研究组合问题,探索运用图示、列表、计算、连线等不同的解决问题的办法,学会有序思考。 教材将两个知识点与学生接触较多的体育问题结合在一起,使学生在解决两个实际问题的过程中来获取新的解决问题的办法,充分体现数学的实际价值。本节课我讲的是第一部分内容。
2、教学及学生状况分析
本节为实践活动课,内容设计将数学与体育问题结合在一起。一般学生每一学年都会参加学校的运动会,也经常观看电视里的体育节目,对于书中所提及的体育问题可以说经常接触,并在不同层面上有过思考。基于这一点,书中的两个问题,部分学生是可以解决的。但要将两个生活中的问题数学化,并要利用数学的方法进行解决,这就有一定的难度,需要帮助学生学会有序思维的方法。
教学目标:
(1)通过解决体操表演中的队列问题,使学生理解方队的含义。
(2)通过解决问题,使学生感受自己的生活与数学有密切的联系。
(3)在活动中感悟数学的价值,激发学生学习数学的兴趣和热爱数学的情感,获得初步的数学活动经验。
教学重难点:
让学生在具体的情景中去观察事物、思考问题,运用所学知识和方法解决生活中的简单问题。
二、说教法与学法
本课我采用了六模式教学法:明确学习目标定向自学,尝试解疑精讲点拨,归纳总结当堂达标,迁移训练回扣目标,课堂小结课堂测标。用情境教学法导入新课,通过欣赏领导人检阅军队的图片,让学生感受队列的美,体会数学与体育的密切联系,激发学生的学习兴趣;用活动探究法,让学生主动探索,实践操作,理解方队的含义;用小组合作法让学生在小组活动中,相互合作,学习多种解决问题的方法。
三、说教学程序设计意图
首先让同学们欣赏了许多美丽的队形,体会到了队形之美,同时也增强了同学们的审美意识,在欣赏中知道了一个美丽的队形,要有许多的因素在里面。 紧接着联系学生实际揭示课题,出示学习目标。学习目标有两点,我也是分两步完成的。 我为学生提供充足的探索时间,充分让学生独立思考,合作交流,积极思考之后,把想法展示出来。使学生们能更充分的明白如何来站队形,同学们在体会到成功的喜悦之后,投入到更积极的学习中去。在轻松掌握所学的内容之后,进行迁移训练,学以致用,进行小练笔 以提升学生对知识的内化。 课堂测标是对本节内容的巩固,以及更高层次的提升。
总之,我力求营造民主、平等、宽松的课堂学习氛围,努力通过巧妙预设的课前谈话和引导,来充分激发学生的学习情感和态度,让学生在轻松愉悦的氛围中获得新知。
数学说课稿 篇2
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。
教学目标
1.知识与技能
(1)理解二次根式的概念。
(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0)。
(3)掌握 ? = (a≥0,b≥0), = ? ;
= (a≥0,b>0), = (a≥0,b>0)。
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。
教学重点
1.二次根式 (a≥0)的内涵。 (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用。
2.二次根式乘除法的规定及其运用。
3.最简二次根式的概念。
4.二次根式的加减运算。
教学难点
1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用。
2.二次根式的乘法、除法的条件限制。
3.利用最简二次根式的概念把一个二次根式化成最简二次根式。
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1 二次根式 3课时
21.2 二次根式的乘法 3课时
21.3 二次根式的加减 3课时
教学活动、习题课、小结 2课时
21.1 二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用 (a≥0)的意义解答具体题目。
提出问题,根据问题给出概念,应用概念解决实际问题。
教学重难点关键
1.重点:形如 (a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用" (a≥0)"解决具体问题。
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , )。
问题2:由勾股定理得AB=
问题3:由方差的概念得S= .
二、探索新知
很明显 、 、 ,都是一些正数的算术平方根。像这样一些正数的算术平方根的式子,我们就把它称二次根式。因此,一般地,我们把形如 (a≥0)的式子叫做二次根式," "称为二次根号。
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0, 有意义吗?
老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0)。
分析:二次根式应满足两个条件:第一,有二次根号" ";第二,被开方数是正数或0.
解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .
例2.当x是多少时, 在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义。
解:由3x-1≥0,得:x≥
当x≥ 时, 在实数范围内有意义。
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时, + 在实数范围内有意义?
分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥- 且x≠-1时, + 在实数范围内有意义。
例4(1)已知y= + +5,求 的值。(答案:2)
(2)若 + =0,求a20xx+b20xx的值。(答案: )
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如 (a≥0)的式子叫做二次根式," "称为二次根号。
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计。
3.课后作业:《同步训练》
第一课时作业设计
一、选择题 1.下列式子中,是二次根式的是( )
A.- B. C. D.x
2.下列式子中,不是二次根式的是( )
A. B. C. D.
3.已知一个正方形的面积是5,那么它的边长是( )
A.5 B. C. D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式。
2.面积为a的正方形的边长为________.
3.负数________平方根。
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时, +x2在实数范围内有意义?
3.若 + 有意义,则 =_______.
4.使式子 有意义的未知数x有( )个。
A.0 B.1 C.2 D.无数
5.已知a、b为实数,且 +2 =b+4,求a、b的值。
第一课时作业设计答案:
一、1.A 2.D 3.B
二、1. (a≥0) 2. 3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x= .
2.依题意得: ,
∴当x>- 且x≠0时, +x2在实数范围内没有意义。
3.
4.B
5.a=5,b=-4
21.1 二次根式(2)
第二课时
教学内容
1. (a≥0)是一个非负数;
2.( )2=a(a≥0)。
教学目标
理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简。
通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题。
教学重难点关键
1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用。
2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0)。
教学过程
一、复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时, 叫什么?当a<0时, 有意义吗?
老师点评(略)。
二、探究新知
议一议:(学生分组讨论,提问解答)
(a≥0)是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出
(a≥0)是一个非负数。
做一做:根据算术平方根的意义填空:
( )2=_______;( )2=_______;( )2=______;( )2=_______;
( )2=______;( )2=_______;( )2=_______.
老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.
同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以
( )2=a(a≥0)
例1 计算
1.( )2 2.(3 )2 3.( )2 4.( )2
分析:我们可以直接利用( )2=a(a≥0)的结论解题。
解:( )2 = ,(3 )2 =32?( )2=32?5=45,
( )2= ,( )2= .
三、巩固练习
计算下列各式的值:
( )2 ( )2 ( )2 ( )2 (4 )2
四、应用拓展
例2 计算
1.( )2(x≥0) 2.( )2 3.( )2
4.( )2
分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.
所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题。
解:(1)因为x≥0,所以x+1>0
( )2=x+1
(2)∵a2≥0,∴( )2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1
(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴( )2=4x2-12x+9
例3在实数范围内分解下列因式:
(1)x2-3 (2)x4-4 (3) 2x2-3
分析:(略)
五、归纳小结
本节课应掌握:
1. (a≥0)是一个非负数;
2.( )2=a(a≥0);反之:a=( )2(a≥0)。
六、布置作业
1.教材P8 复习巩固2.(1)、(2) P9 7.
2.选用课时作业设计。
3.课后作业:《同步训练》
第二课时作业设计
一、选择题
1.下列各式中 、 、 、 、 、 ,二次根式的个数是( )。
A.4 B.3 C.2 D.1
2.数a没有算术平方根,则a的取值范围是( )。
A.a>0 B.a≥0 C.a<0 D.a=0
二、填空题
1.(- )2=________.
2.已知 有意义,那么是一个_______数。
三、综合提高题
1.计算
(1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2
(5)
2.把下列非负数写成一个数的平方的形式:
(1)5 (2)3.4 (3) (4)x(x≥0)
3.已知 + =0,求xy的值。
4.在实数范围内分解下列因式:
(1)x2-2 (2)x4-9 3x2-5
第二课时作业设计答案:
一、1.B 2.C
二、1.3 2.非负数
三、1.(1)( )2=9 (2)-( )2=-3 (3)( )2= ×6=
(4)(-3 )2=9× =6 (5)-6
2.(1)5=( )2 (2)3.4=( )2
(3) =( )2 (4)x=( )2(x≥0)
3. xy=34=81
4.(1)x2-2=(x+ )(x- )
(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )
(3)略
21.1 二次根式(3)
第三课时
教学内容
=a(a≥0)
教学目标
理解 =a(a≥0)并利用它进行计算和化简。
通过具体数据的解答,探究 =a(a≥0),并利用这个结论解决具体问题。
教学重难点关键
1.重点: =a(a≥0)。
2.难点:探究结论。
3.关键:讲清a≥0时, =a才成立。
教学过程
一、复习引入
老师口述并板收上两节课的重要内容;
1.形如 (a≥0)的式子叫做二次根式;
2. (a≥0)是一个非负数;
3.( )2=a(a≥0)。
那么,我们猜想当a≥0时, =a是否也成立呢?下面我们就来探究这个问题。
二、探究新知
(学生活动)填空:
=_______; =_______; =______;
=________; =________; =_______.
(老师点评):根据算术平方根的意义,我们可以得到:
=2; =0.01; = ; = ; =0; = .
因此,一般地: =a(a≥0)
例1 化简
(1) (2) (3) (4)
分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,
(4)(-3)2=32,所以都可运用 =a(a≥0)去化简。
解:(1) = =3 (2) = =4
(3) = =5 (4) = =3
三、巩固练习
教材P7练习2.
四、应用拓展
例2 填空:当a≥0时, =_____;当a<0时, =_______,并根据这一性质回答下列问题。
(1)若 =a,则a可以是什么数?
(2)若 =-a,则a可以是什么数?
(3) >a,则a可以是什么数?
分析:∵ =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使"( )2"中的数是正数,因为,当a≤0时, = ,那么-a≥0.
(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知 =│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.
解:(1)因为 =a,所以a≥0;
(2)因为 =-a,所以a≤0;
(3)因为当a≥0时 =a,要使 >a,即使a>a所以a不存在;当a<0时,>a,即使-a>a,a<0综上,a<0
例3当x>2,化简 - .
分析:(略)
五、归纳小结
本节课应掌握: =a(a≥0)及其运用,同时理解当a<0时, =-a的应用拓展。
六、布置作业
1.教材P8习题21.1 3、4、6、8.
2.选作课时作业设计。
3.课后作业:《同步训练》
第三课时作业设计
一、选择题
1. 的值是( )。
A.0 B. C.4 D.以上都不对
2.a≥0时, 、 、- ,比较它们的结果,下面四个选项中正确的是( )。
A. = ≥- B. > >-
C. < <- d.-=""> =
二、填空题
1.- =________.
2.若 是一个正整数,则正整数m的最小值是________.
三、综合提高题
1.先化简再求值:当a=9时,求a+ 的值,甲乙两人的解答如下:
甲的解答为:原式=a+ =a+(1-a)=1;
乙的解答为:原式=a+ =a+(a-1)=2a-1=17.
两种解答中,_______的解答是错误的,错误的原因是__________.
2.若│1995-a│+ =a,求a-19952的值。
(提示:先由a-20xx≥0,判断1995-a的值是正数还是负数,去掉绝对值)
3. 若-3≤x≤2时,试化简│x-2│+ + .
答案:
一、1.C 2.A
二、1.-0.02 2.5
三、1.甲 甲没有先判定1-a是正数还是负数
2.由已知得a-20xx≥0,a≥20xx
所以a-1995+ =a, =1995,a-20xx=19952,
所以a-19952=20xx.
3. 10-x
21.2 二次根式的乘除
第一课时
教学内容
? = (a≥0,b≥0),反之 = ? (a≥0,b≥0)及其运用。
教学目标
理解 ? = (a≥0,b≥0), = ? (a≥0,b≥0),并利用它们进行计算和化简
由具体数据,发现规律,导出 ? = (a≥0,b≥0)并运用它进行计算;利用逆向思维,得出 = ? (a≥0,b≥0)并运用它进行解题和化简。
教学重难点关键
重点: ? = (a≥0,b≥0), = ? (a≥0,b≥0)及它们的运用。
难点:发现规律,导出 ? = (a≥0,b≥0)。
关键:要讲清 (a<0,b<0)= ,如 = 或 = = × .
教学过程
一、复习引入
(学生活动)请同学们完成下列各题。
1.填空
(1) × =_______, =______;
(2) × =_______, =________.
(3) × =________, =_______.
参考上面的结果,用">、<或="填空。
× _____ , × _____ , × ________
2.利用计算器计算填空
(1) × ______ ,(2) × ______ ,
(3) × ______ ,(4) × ______ ,
(5) × ______ .
老师点评(纠正学生练习中的错误)
二、探索新知
(学生活动)让3、4个同学上台总结规律。
老师点评:(1)被开方数都是正数;
(2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。
一般地,对二次根式的乘法规定为
? = .(a≥0,b≥0)
反过来: = ? (a≥0,b≥0)
例1.计算
(1) × (2) × (3) × (4) ×
分析:直接利用 ? = (a≥0,b≥0)计算即可。
解:(1) × =
(2) × = =
(3) × = =9
(4) × = =
例2 化简
(1) (2) (3)
(4) (5)
分析:利用 = ? (a≥0,b≥0)直接化简即可。
解:(1) = × =3×4=12
(2) = × =4×9=36
(3) = × =9×10=90
(4) = × = × × =3xy
(5) = = × =3
三、巩固练习
(1)计算(学生练习,老师点评)
① × ②3 ×2 ③ ?
(2) 化简: ; ; ; ;
教材P11练习全部
四、应用拓展
例3.判断下列各式是否正确,不正确的请予以改正:
(1)
(2) × =4× × =4 × =4 =8
解:(1)不正确。
改正: = = × =2×3=6
(2)不正确。
改正: × = × = = = =4
五、归纳小结
本节课应掌握:(1) ? = =(a≥0,b≥0), = ? (a≥0,b≥0)及其运用。
六、布置作业
1.课本P15 1,4,5,6.(1)(2)。
2.选用课时作业设计。
3.课后作业:《同步训练》
第一课时作业设计
一、选择题
1.若直角三角形两条直角边的边长分别为 cm和 cm,那么此直角三角形斜边长是( )。
A.3 cm B.3 cm C.9cm D.27cm
2.化简a 的结果是( )。
A. B. C.- D.-
3.等式 成立的条件是( )
A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1
4.下列各等式成立的是( )。
A.4 ×2 =8 B.5 ×4 =20
C.4 ×3 =7 D.5 ×4 =20
二、填空题
1. =_______.
2.自由落体的公式为S= gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.
三、综合提高题
1.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?
2.探究过程:观察下列各式及其验证过程。
(1)2 =
验证:2 = × = =
= =
(2)3 =
验证:3 = × = =
= =
同理可得:4
5 ,……
通过上述探究你能猜测出: a =_______(a>0),并验证你的结论。
答案:
一、1.B 2.C 3.A 4.D
二、1.13 2.12s
三、1.设:底面正方形铁桶的底面边长为x,
则x2×10=30×30×20,x2=30×30×2,
x= × =30 .
2. a =
验证:a =
= = = .
21.2 二次根式的乘除
第二课时
教学内容
= (a≥0,b>0),反过来 = (a≥0,b>0)及利用它们进行计算和化简。
教学目标
理解 = (a≥0,b>0)和 = (a≥0,b>0)及利用它们进行运算。
利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简。
教学重难点关键
1.重点:理解 = (a≥0,b>0), = (a≥0,b>0)及利用它们进行计算和化简。
2.难点关键:发现规律,归纳出二次根式的除法规定。
教学过程
一、复习引入
(学生活动)请同学们完成下列各题:
1.写出二次根式的乘法规定及逆向等式。
2.填空
(1) =________, =_________;
(2) =________, =________;
(3) =________, =_________;
(4) =________, =________.
规律: ______ ; ______ ; _______ ;
_______ .
3.利用计算器计算填空:
(1) =_________,(2) =_________,(3) =______,(4) =________.
规律: ______ ; _______ ; _____ ; _____ .
每组推荐一名学生上台阐述运算结果。
(老师点评)
二、探索新知
刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:
一般地,对二次根式的除法规定:
= (a≥0,b>0),
反过来, = (a≥0,b>0)
下面我们利用这个规定来计算和化简一些题目。
例1.计算:(1) (2) (3) (4)
分析:上面4小题利用 = (a≥0,b>0)便可直接得出答案。
解:(1) = = =2
(2) = = ×=2
(3) = = =2
(4) = = =2
例2.化简:
(1) (2) (3) (4)
分析:直接利用 = (a≥0,b>0)就可以达到化简之目的。
解:(1) =
(2) =
(3) =
(4) =
三、巩固练习
教材P14 练习1.
四、应用拓展
例3.已知 ,且x为偶数,求(1+x) 的值。
分析:式子 = ,只有a≥0,b>0时才能成立。
因此得到9-x≥0且x-6>0,即6 解:由题意得 ,即 ∴6 ∵x为偶数 ∴x=8 ∴原式=(1+x) =(1+x) =(1+x) = ∴当x=8时,原式的值= =6. 五、归纳小结 本节课要掌握 = (a≥0,b>0)和 = (a≥0,b>0)及其运用。 六、布置作业 1.教材P15 习题21.2 2、7、8、9. 2.选用课时作业设计。 3.课后作业:《同步训练》 第二课时作业设计 一、选择题 1.计算 的结果是( )。 A. B. C. D. 2.阅读下列运算过程: , 数学上将这种把分母的根号去掉的过程称作"分母有理化",那么,化简 的结果是( )。 A.2 B.6 C. D. 二、填空题 1.分母有理化:(1) =_________;(2) =________;(3) =______. 2.已知x=3,y=4,z=5,那么 的最后结果是_______. 三、综合提高题 1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为 :1,现用直径为3 cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少? 2.计算 (1) ?(- )÷ (m>0,n>0) (2)-3 ÷( )× (a>0) 答案: 一、1.A 2.C 二、1.(1) ;(2) ;(3) 2. 三、1.设:矩形房梁的宽为x(cm),则长为 xcm,依题意, 得:( x)2+x2=(3 )2, 4x2=9×15,x= (cm), x?x= x2= (cm2)。 2.(1)原式=- ÷ =- =- =- (2)原式=-2 =-2 =- a 21.2 二次根式的乘除(3) 第三课时 教学内容 最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算。 教学目标 理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式。 通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求。 重难点关键 1.重点:最简二次根式的运用。 2.难点关键:会判断这个二次根式是否是最简二次根式。 教学过程 一、复习引入 (学生活动)请同学们完成下列各题(请三位同学上台板书) 1.计算(1) ,(2) ,(3) 老师点评: = , = , = 2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_________. 它们的比是 . 二、探索新知 观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1.被开方数不含分母; 2.被开方数中不含能开得尽方的因数或因式。 我们把满足上述两个条件的二次根式,叫做最简二次根式。 那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式。 学生分组讨论,推荐3~4个人到黑板上板书。 老师点评:不是。 = . 例1.(1) ; (2) ; (3) 例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长。 解:因为AB2=AC2+BC2 所以AB= = =6.5(cm) 因此AB的长为6.5cm. 三、巩固练习 教材P14 练习2、3 四、应用拓展 例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式: = = -1, = = - , 同理可得: = - ,…… 从计算结果中找出规律,并利用这一规律计算 ( + + +…… )( +1)的值。 分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的。 解:原式=( -1+ - + - +……+ - )×( +1) =( -1)( +1) =20xx-1=20xx 五、归纳小结 本节课应掌握:最简二次根式的概念及其运用。 六、布置作业 1.教材P15 习题21.2 3、7、10. 2.选用课时作业设计。 3.课后作业:《同步训练》 第三课时作业设计 一、选择题 1.如果 (y>0)是二次根式,那么,化为最简二次根式是( )。 A. (y>0) B. (y>0) C. (y>0) D.以上都不对 2.把(a-1) 中根号外的(a-1)移入根号内得( )。 A. B. C.- D.- 3.在下列各式中,化简正确的是( ) A. =3 B. =± C. =a2 D. =x 4.化简 的结果是( ) A.- B.- C.- D.- 二、填空题 1.化简 =_________.(x≥0) 2.a 化简二次根式号后的结果是_________. 三、综合提高题 1.已知a为实数,化简: -a ,阅读下面的解答过程,请判断是否正确?若不正确,请写出正确的解答过程: 解: -a =a -a? =(a-1) 2.若x、y为实数,且y= ,求 的值。 答案: 一、1.C 2.D 3.C 4.C 二、1.x 2.- 三、1.不正确,正确解答: 因为 ,所以a<0, 原式= -a? = ? -a? =-a + =(1-a) 2.∵ ∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=