数学说课稿

2021-06-13说课稿

关于数学说课稿3篇

  作为一名优秀的教育工作者,常常要写一份优秀的说课稿,是说课取得成功的前提。说课稿应该怎么写呢?以下是小编收集整理的数学说课稿3篇,欢迎阅读与收藏。

数学说课稿 篇1

  一、说教材

  本节课教学是探索积的小数位数与乘数的小数位数的关系,教材在编排上体现了以下特点:

  1、街心广场教材创设了计算街心广场面积,花坛面积和每块地砖的面积等情景,在活动中引导学生观察三个长方形长、宽、面积之间的关系,使学生初步感知到小数乘法可以先按整数乘法计算,再来确定积的小数点的位置。

  2、教材还通过情境图引导学生从不同角度来探索地板砖面积,女少可以从前两个整数乘法算式的得数,推想出小数乘法得数;可以通过单位名称的转换推出得数。

  3、教材通过尝试练习:试一试和填一填的活动,使学生归纳出两个乘数一共有几位小数,积就有几位小数的规律,这些都能激起学生独立探索的热情和创新意识。

  教学目标:

  1、结合三个长方形面积关系,促能学生探索积的小数位数与乘法的小数位数的关系。

  2、通过具体情境,发现数学信息。培养观察、收集信息的习惯。

  3、能应用这一关系进行简单的小数乘法计算。

  4、培养学生探索精神,提高学生的学习兴趣。

  二、说设计意图

  俗话说:教学有法,教无定法,贵在得法。根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过小数点搬家情境感知并进行猜想,再通过操作验证,从故事中提取数学问题,自己总结归纳出小数点移动的变化规律,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。

  自主探索,发展学习,不断创新课题实验研究,旨在改变教与学的方式,教师的教是为学生的自主学习,主动探索创造条件,是为学生独立思考、动手实践、合作交流引导搭桥在设计这一课时,是让学生真正在探索中发展自主探究和。因此,我对教材进行创造性的处理,努力为学生创设一个广阔的活动空间,探索空间,让学生最大限度地参与探索的全过程,具体设计了以下几个探索活动。

  活动 1 :教师给每个学生发一张街心广场的放大平面图,让学生进行讨论三个长方形的长与长、宽与宽有什么关系?它们的面积之间可能有什么关系?

  活动 2 :在计算出它们各自的面积时,引导学生观察这些数字特征和小数点的位置,教师板书配合说明。

  活动 3 :根据积随因数变化的规律,举出实例让学生探索、解答。

  活动 4 :在尝试练习中,师生共同探索、归纳出:积的小数位数与乘数的小数位数的关系。

  总之,在教学中,凡是学生自己能发现的都让他们.自己去探索,如果有一定的困难就创造条件让他们合作探索。教师尊重学生自我发现,尊重学生创新思维和方法。

  三、说教学流程

  (一)回顾旧知识,过渡新知识

  1、小数点位置移动引起小数大小变化规律。

  2、长方形的面积计算公式。

  3、接着教师发给每生一张街心广场放大平面图提出问题。

  A 、它们都是什么图形?

  B 、三个长方形的长之间,宽之间有什么关系,面积之间可能有什么关系?

  板书课题:街心广场

  (二)合作交流,解决问题。

  1、学生思考,并回答自己的想法。

  观察情境图,得知街心广场、花坛和每块地砖的长分别为 30 米、 3 米和 0.3 米,宽分别为 20 米、 2 米和 0.2 米,从这些数据中可以看出,三个长方形长是依次缩小到原来的,宽之间也是如此。那么,面积之间又有什么关系呢?根据长方形面积=长 x 宽,我们先求出三个长方形的面积。

  板书: ( 1)街心广场面积为 30 20 = 600 (平方米 )

  ( 2)花坛的面积为 3 x 2 = 6 (平方米 )

  ( 3)每块地砖的面积为 0.3 x 0.2 二 0.06 (平方米 )

  学生可能对 0.3 0.2 =0.06不大理解,教师引导可以利用单位之间的换算来求。 0.3米 = 3 分米 0.2米=2分米 3 x2= 6 (平方米 ) 6 平方分米= 0.06平方米故 0.30.2=0.06

  2、引导探索发现:在乘法中,一个因数缩小到原来的,另一个因数缩小到原来的,积则缩小到原来的。(反之,一个因数扩大到原来的 10 倍,另一个因数扩大到原来的 10 倍,积则扩大到原来的 100 倍)

  3、尝试练习,引导提问,归纳。

  课本第 43 页试一试,填一填,可以发现,在4 0.3 =1.2 中,两个乘数共有 0 + 1=1位小数,积 1.2 里也有 1 位小数:在 0.40.3 = 0.12 中,两个乘数共有 1 + 1 =2位小数,积 0 .12 也有 2 位小数。在 0.13x2 = 26 中,两个乘数共有 2 + 0 =2位小数,积 0.26 是也有 2 位小数;在 0.13x 0.2 = 0.026 中,两个乘数共有 2十1 = 3 位小数,积 0 . 026 里也有 3 位小数。

  归纳:在小数乘法中,两个乘数一共有几位小数,积就有几位小数。

  (三)课堂小结

  (四)巩固练习

  1、课堂作业,完成课本第 43 页的练一练第 1 一 2 题。

  2、基础训练上的相关作业。

数学说课稿 篇2

  一、说教材

  1、本节教材是义务教育小学数学(鲁教版)六年下册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。

  2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  3、教学重、难点:⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;⑵教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  5、教、学具准备:⑴教具准备:等底等高的圆柱、圆锥一对;⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。

  二、说教法

  著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

  1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

  2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

  三、说学法

  “人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。

  1、实验转化法

  有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

  2、尝试练习法

  苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课我设计了以下四个教学程序:

  1、谈话导入

  ⑴出示圆柱:如果想知道这个容器的容积,怎么办?

  ⑵出示圆锥:如果想知道这个容器的容积,怎么办?

  2、教学例五

  ⑴引导观察:这个圆柱和圆锥有什么相同的地方?

  ⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?

  ⑶讨论:可以用什么方法来验证你的估计?

  ⑷分组验证;引导学生用适合的方法进行操作验证。

  ⑸交流:说说自己小组是怎么验证的,得到的结论是什么?

  ⑹讨论:①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的`三分之一?为什么?应该怎么说才准确?②那怎么算出这个圆锥的容积呢?③推导出圆锥体积的公式(师板书)。④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?

  ⑺完成“试一试”。

  3、巩固练习

  做“练一练”。

  4、归纳总结

  通过本节课你有什么收获?有哪些问题需要我们今后注意?

上一篇:关于数学说课稿模板汇总5篇下一篇:小学数学《小数乘法》说课稿