《平方差公式》说课稿

2020-12-30保护环境

中学数学《平方差公式》说课稿范文

  作为一位优秀的人民教师,常常需要准备说课稿,说课稿有助于教学取得成功、提高教学质量。那么写说课稿需要注意哪些问题呢?下面是小编整理的中学数学《平方差公式》说课稿范文,欢迎阅读,希望大家能够喜欢。

  中学数学《平方差公式》说课稿1

  一、说目标

  1、使孩子理解和掌握平方差公式,并会用公式进行计算;

  2、注意培养孩子分析、综合和抽象、概括以及运算能力。

二、说重难点

  本节教学的重点是掌握公式的结构特征及正确运用公式、难点是公式推导的理解及字母的广泛含义、平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础、

  1、平方差公式是由多项式乘法直接计算得出的:与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项、合并同类项后仅得两项。

  2、这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差、公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。

  只要符合公式的结构特征,就可运用这一公式、例如在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了。

  3、关于平方差公式的特征,在学习时应注意:

  (1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数。

  (2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方)。

  (3)公式中的和可以是具体数,也可以是单项式或多项式。

  (4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算。

三、说教法

  1、可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发孩子的学习兴趣,使孩子能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养孩子观察、概括的能力。

  2、通过孩子自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即(a+b)(a—b)=a2+ab—ab—b2=a2—b2

  这样得出平方差公式,并且把这类乘法的实质讲清楚了。

  3、通过例题、练习与小结,教会孩子如何正确应用平方差公式、这里特别要求孩子注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1—2x),(1+2x)(1—2x)=12—(2x)2=1—4x2——(a+b)(a—b)=a2—b2。

  这样,孩子就能正确应用公式进行计算,不容易出差错。

  另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养孩子解题的灵活性。

四、说学法

  一、师生共同研究平方差公式

  我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。

  让孩子动脑、动笔进行探讨,并发表自己的见解、教师根据孩子的回答,引导孩子进一步思考:

  两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

  (当乘式是两个数之和以及这两个数之差相乘时,积是二项式、这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了、而它们的积等于乘式中这两个数的平方差)

  继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算、以后经常遇到(a+b)(a—b)这种乘法,所以把(a+b)(a—b)=a2—b2作为公式,叫做乘法的平方差公式。

  在此基础上,让孩子用语言叙述公式。

  二、运用举例变式练习

  例1计算(1+2x)(1—2x)

  解:(1+2x)(1—2x)

  =12—(2x)2

  =1—4x2

  教师引导孩子分析题目条件是否符合平方差公式特征,并让孩子说出本题中a,b分别表示什么。

  例2计算(b2+2a3)(2a3—b2)

  解:(b2+2a3)(2a3—b2)

  =(2a3+b2)(2a3—b2)

  =(2a3)2—(b2)2

  =4a6—b4

  教师引导孩子发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。

  课堂练习

  运用平方差公式计算:

  (1)(x+a)(x—a);

  (2)(m+n)(m—n);

  (3)(a+3b)(a—3b);

  (4)(1—5y)(1+5y)、

  例3计算(—4a—1)(—4a+1)

  让孩子在练习本上计算,教师巡视孩子解题情况,让采用不同解法的两个孩子进行板演。

  解法1:(—4a—1)(—4a+1)

  =[—(4a+1)][—(4a—1)]

  =(4a+1)(4a—1)

  =(4a)2—12

  =16a2—1

  解法2:(—4a—1)(—4a+1)

  =(—4a)2—1

  =16a2—1

  根据孩子板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的'差相乘的形式,应用平方差公式,写出结果、解法2把—4a看成一个数,把1看成另一个数,直接写出(—4a)2—12后得出结果、采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷、因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案、

  课堂练习

  1、口答下列各题:

  (1)(—a+b)(a+b);

  (2)(a—b)(b+a);

  (3)(—a—b)(—a+b);

  (4)(a—b)(—a—b)。

  2、计算下列各题:

  (1)(4x—5y)(4x+5y);

  (2)(—2x2+5)(—2x2—5);

  教师巡视孩子练习情况,请不同解法的孩子,或发生错误的孩子板演,教师和孩子一起分析解法。

  三、小结

  1、什么是平方差公式?

  2、运用公式要注意什么?

  (1)要符合公式特征才能运用平方差公式;

  (2)有些式子表面不能应用公式,但实质能应用公式,要注意变形、

  四、作业

  1、运用平方差公式计算:

  (1)(x+2y)(x—2y);

  (2)(2a—3b)(3b+2a);

  (3)(—1+3x)(—1—3x);

  (4)(—2b—5)(2b—5);

  (5)(2x3+15)(2x3—15);

  (6)(0.3x—0.1)(0.3x+1)。

  2、计算:

  (1)(x+y)(x—y)+(2x+y)(2x+y);

  (2)(2a—b)(2a+b)—(2b—3a)(3a+2b);

  (3)x(x—3)—(x+7)(x—7);

  (4)(2x—5)(x—2)+(3x—4)(3x+4)。

上一篇:心理健康教育说课稿范文(精选3篇)下一篇:《氧气》的说课稿