原子核结构的研讨论文(2)

2020-06-17实用文

四、原子核的稳定性

  在原子核中,质子与中子的有机组合构成了原子核真实的直观结构。在核环上有多少个核子,就应有多少个核键,如12C核环上有12个核键,13C则有13个核键。这些核键是一个统一的整体,破坏一个原子核,必须给予其核子环上应有的若干个核键的总能量——总结合能E总。

  一些稳定的原子核(包括基态核)的平面直观结构(可能的轴线)如下图所示:

  HeLiLiBe

  同它们结构相似的又如12C、13C、14N、15N、16O、17O、20Ne、23Na、32S、40Ca等等。

  一般情况下,原子核最稳定的结构是中子与质子均匀相间排列的核子环,且N=Z。它们是“具有高度的中子-质子对称性的球形自轭核”,它们的核环上任一核子都达到了完全饱和键态,中子与质子结合得很紧密,电荷分布为球对称,如奇奇核14N和偶偶核16O等。在这样的核环上加入(或去掉)一个或几个中子成键,在核环一处或几处出现了剩余相互作用,即相同核子间出现了不饱和核力,核圆环可能因此变形为椭圆环,从而形成了近球形核。以上正是平均场理论所描述的。〔4〕

  对于中子数多于质子数较多的中等核及重核,它们的核环上可每相隔两个中子再排列一个质子,形成的核也是稳定的,即Z≤N≤2Z。但核环上最多一处可排列三个相连的中子,如果中间的那个中子不稳定,具有很大的动能(使核环发生形变的,而非转动的动能)。核环为阻止自身的形变,在核的表面张力作用下,会迫使其发生β-衰变,使其衰变成质子,然后与两侧的中子恰形成饱和核键而达到稳定。或者,此中子虽无大的形变动能,但受到核环上强大的表面张力的压迫、冲击,达到弱作用范围,也会发生β-衰变,这就是重核的β-衰变。

  在饱和的核环一处去掉一个中子(可加入一个质子),会使两个质子直接作用,达到了弱作用范围,其中的一个质子会发生β+衰变,衰变成一个质量仅次于质子的中性新粒子——次中子,然后重新形成核键。但次中子是不稳定的,它能吸收光子(γ→e+e),而转变成中子,如发生β+衰变后的重核伴随着正负电子对的吸收现象,就反映了次中子的这一特性。如果质子不发生β+衰变,也可通过俘获K电子使其中的一个质子转变成中子而重新形成稳定的核键。可见,中子与质了在原子核内互相限制、彼此制约,并且中子在原子核内的作用就是起到连接质子的作用。当中子数少于质子数时,原子核就会不稳定,会发生β+衰变或K俘获。虽然核自由中子会发生β-衰变,但在原子核内与质子成键后的束缚中子不会发生ββ-衰变,这是饱和核力作用的结果。

  当核环上的中子与中子直接相连时,两个中子成键均未饱和,出现剩余相互作用,可仍与外来的低能量的中子形成弱的核力,但不在弱作用范围内,不会发生β-衰变。这个中子没有能力加到核子环上去,而是在核环外围形成很长的核键,因量子运动而形成核的中子晕或核的中子皮,如11Li、11Be、14Be的中子晕及6He、8He的中子皮,这些具有中子晕的或中子皮的原子核是一种弱束缚态的密度不均匀的体系。﹝5﹞

  对于重核,中子与中子直接连接处较多,剩余相互作用较大,在核内起主导作用,当核环变形为梭形时,在核的两端尖部会引起α衰变,使核环向圆环状恢复,这样就会发射α粒子。核子环能够变形,与转动频率有关。在较低角动量时,原子核形成一个中等形变的扁椭圆形状,随着角动量的增加,原子核具有长椭球形变或三轴形变。当角动量继续增加时,核环将在剩余相互作用下发生裂变,此时剩余相互作用能克服质子间的斥力及转动引起的离心力,使核子重新组合成两个或多个子核环。以上是由原子核的转动液滴模型所描述的。﹝6﹞

  千变万化的核反应,就是使核环上局部的核子间原来的核键被破坏,并重新形成更强的新核键的过程,同时通过发射粒子(或γ射线)进行退激发,使新结合的核环向圆环状恢复(斥力作用),这样就产生了新的稳定的核。在低能时,核反应为熔合蒸发、转移和电荷交换反应;高能时,核反应为散裂、多重碎裂和裂变反应。

五、结束语

  真理往往就是那样朴素,重要的是人们要善于发现它。我希望能有更多的人接受本文思想精华,再付诸于实践,我相信对核物理的发展将带为质的飞跃!

附参考文献

  1~6丁大钊、陈永寿、张焕乔原子核物理进展

  上海:科学技术出版社1997,559

【原子核结构的研讨论文】相关文章:

1.议论文基本结构的写法

2.设计高层建筑结构的论文

3.造价成本影响建筑结构的论文

4.资源型城市产业结构的论文

5.断屑槽的不同结构的论文

6.认识原子核教学设计方案

7.法院党建工作研讨论文

8.小学数学高效教课形式的研讨论文

上一篇:造价成本影响建筑结构的论文下一篇:试论意识胚的演化论文