数列通项公式方法总结

2018-07-22总结

  导语:数列既是高中数学的重要内容,也是学习高等数学的基础,因此,每年高考对本章内容均作较全面的考查,而且经常是以综合题、主观题的形式出现,难度较大,以下是小编整理数列通项公式方法总结的资料,欢迎阅读参考。

  不过一般分小题、有梯度设问,往往是第1小题就是求数列的通项公式,难度适中,一般考生可突破,争取分数,而且是做第2小题的基础,因此,求数列通项公式的解题方法、技巧,每一位考生都必须熟练掌握。求数列通项公式的题型很多,不同的题型有不同的解决方法。下面结合教学实践,谈谈求数列通项公式的解题思路。

一、已知数列的前几项

  已知数列的前几项,求通项公式。通过观察找规律,分析出数列的项与项数之间的关系,从而求出通项公式。这种方法称为观察法,也即是归纳推理。

  例1、求数列的通项公式

  (1)0,22——1/3,32——1/4,42+1/5……

  (2)9,99,999,……

  分析:(1)0=12——1/2,每一项的分子是项数的平方减去1,分母是项数加上1,n2——1/n+1=n——1,其实,该数列各项可化简为0,1,2,3,……,易知an=n——1。

  (2)各项可拆成10-1,102-1,103-1,……,an=10n——1。

  此题型主要通过让学生观察、试验、归纳推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生的思维能力。

二、已知数列的前n项和Sn

  已知数列的前n项和Sn,求通项公式an,主要通过an与Sn的关系转化,即an -{ S1(n=1) Sn -Sn——1(n≥2)

  例2、已知数列{an }的前n项和Sn=2n+3,求an

  分析:Sn=a1+a2 +……+an——1+an

  Sn——1=a1+a2 +……+an——1

  上两式相减得 Sn -Sn——1=an

  解:当n=1时,a1=S1=5

  当n≥2时,an =Sn -Sn——1=2n+3-(2n——1+3)=2n——1

  ∵n=1不适合上式

  ∴an ={5(n=1) 2n——1(n≥2)

上一篇:个人年度工作总结精选范文下一篇:高中生物探究方法总结