一次函数教学课件
教学目标:
⒈经历一般规律的探索过程、发展学生的抽象概括思维能力
⒉理解一次函数和正比例函数的概念,以及它们之间的关系,《一次函数》教案。能根据所给条件写出简单的一次函数表达式。
⒊通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
教学重点:
1.一次函数、正比例函数的概念及关系。
2.会根据已知信息写出一次函数的表达式。
教学难点:会根据已知信息写出一次函数的表达式。
教学方法:引导学生自学法、互动学习法、启发讨论式。
教具准备:多媒体课件(补充练习6.2A)
教学过程:
一、导入新课
上节课我们已学习过函数的概念,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。在现实生活中有许多问题都可以归结为函数问题。大家能不能举一些列子呢?
二、推进新课
复习函数的概念及方程,接下来我们要从最简单而重要的一种函数讲起,到底是什么样的函数请看P182引例和做一做
1、P182引例:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:
x/千克012345 y/厘米33.544.555.5
(2)你能写出x与y之间的关系式吗?
分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。